Many members of the family Gesneriaceae are cultivated as ornamental plants, including Cape primrose (Streptocarpus) species. The range of plant architecture found in this genus has also made it a model to study leaf and meristem development and their evolution. However, the lack of tools to study gene functions through reverse genetics in Streptocarpus has limited the exploitation of its genetic potential. To aid functional genomic studies in Streptocarpus rexii, we sought to investigate virus-induced gene silencing (VIGS). Using the broad host range Tobacco Rattle Virus (TRV) to target the PHYTOENE DESATURASE (PDS) gene of S. rexii, we show that infection with sap from Nicotiana benthamiana triggered VIGS efficiently. VIGS was most effective in the seedling leaves 8 weeks after sowing, but was limited in duration and systemic spread. This study reports the first successful use of VIGS in Streptocarpus and in the family Gesneriaceae. The inoculation of viral sap derived from N. benthamiana was able to overcome the difficulties of standard Agrobacterium-mediated transformation in this genus. Irrespective of its transient effect, this VIGS system will be useful to assess gene function at the cellular level and represent an important tool for further understanding molecular mechanisms in Streptocarpus.
Virus‑induced Gene Silencing in Streptocarpus rexii (Gesneriaceae)
Publication: Molecular Biotechnology
Year: 2020
Genera:
Streptocarpus